Back to Blog
by John McCaw
John McCaw

7 min read

The Challenges Of Using Alternative Energy For Transportation

August 21, 2020

John McCaw
by John McCaw


Alternative energy technology has infiltrated nearly all aspects of the world we live in and blazed a trail toward change that many remain unsure of. This is particularly true of alternative transportation energy. While 2018 data shows that diesel still had 93 percent market share of the United States fuel portfolio, new energy types are becoming more widely available and mobilized in real-world scenarios. From electric vehicles to natural gas, battery-powered cars to renewable energy, and beyond, advancements in alternative energy vehicles are on the horizon, and the industry is incredibly optimistic about the future of sustainable transport solutions.


For examples of the current state of these alternatives, read about Nikola’s stance on the use of Electric Vehicles in transportation, the viability of CNG transport, and an overview of biodiesel and renewable diesel. 

Amidst the excitement of alternative energies, however, transportation industry challenges do exist and tend to be consistent regardless of which alternative energy source is being assessed. These are large-scale challenges that must be scaled collectively by the transportation industry to make widespread adoption possible.

The four main challenges that create barriers for wide acceptance and use alternative energy technology in transportation include: 

  • High Cost of Entry
  • Infrastructure Constraints
  • Issues of Standardization
  • Awareness

Alternative Fuel Vehicles Are Expensive

New technologies almost always require a high level of front-end capital investment. Early-stage technology is almost always incredibly expensive to implement. Both the vehicles that use it and the energy itself requires capital investment from a diverse array of stakeholders that are wholeheartedly committed to the goal. 

When final versions of the technology are reached, additional funding will be needed to make it commercially available at scale. This manifests first with pilots, then the introduction of it within sample conditions that require support across stakeholders. Only real-world proof points will elevate these options for mass production. 

For example, BYD has Class 8 heavy-duty trucks on the road, but the payback period compared to a diesel-powered truck is significantly more.  They will need state-incentives and funding to improve the equipment to be able to penetrate the market and compete with conventional energies, like diesel.  


At a high level, economic viablility comes in the ability to reduce the on-going cost of energy to recoup the equipment premium costs of alternative vehicles.  The simple model above shows the overall cost for equipment, maintenance, and energy per miles traveled. (Equipment residue value not included. The diesel maintenance cost of $0.17/mi included.  CNG maintenance = Diesel +$0.02/mi, BEV maintenance= Diesel – $0.01/mi).

Even after wider use, these fresh technologies will remain expensive until enough adoption occurs in the marketplace to balance supply and demand. 

This process creates a positive feedback loop—high costs keep investors at bay, waiting for early adopters to initiate the movement. But without early adopters costs remain high. Even in the case of the most widely used alternatives, early applications come from a few first movers, and widespread use is yet to be seen when considered within the scope of the entire transportation landscape.

Charging Stations and Fueling Locations Are Sparse


New CNG station builds peaked in 2014 at 163. Since that time, the number of new stations declines each consecutive year. There are only 30 new stations registered through 2018 and 11 new stations in 2019. Infrastructure in the hydrogen fuel cell and electric spaces has yet to develop.

Because the adoption of new transportation energy technology proves to be a relatively slow process, developing adequate infrastructure to support it, in turn, takes time. To date, infrastructure continues to be one of the largest challenges facing the transportation industry to fully adopt battery-electric, hydrogen fuel cell, CNG, RNG, and other fuel types. 

It can be difficult to motivate the development of fueling stations on a large scale when vehicles that leverage the technology are not widely in use. Additionally, convincing either shippers or carriers to purchase drivetrains that do not have wider access to the energy needed to operate is also a tough sell. 

This leads back to the issue of cost where a game theory-esque dance over who will first invest in infrastructure occurs. If the industry can collectively commit to developing infrastructure, the benefit for all parties stands to be highest. This is not to say infrastructure is stagnant. 

Some organizations are working to mitigate this chicken-or-the-egg scenario, like Nikola Motors who is striving to provide not only the vehicle but also build out the infrastructure.  

Standardized Power Generation is Difficult Across OEMs

Every year new advancements in fuel and equipment are making the alternative energy landscape more efficient and more ideal for implementation in real-world applications. This does, however, pose different challenges. How do corporations keep up? It seems the newest model is released before the prior technology even has a chance to take hold in the market.

To combat the short lifecycles of new technology, collaboration around standardization is essential. The industry needs to decide, “to what are we plugging into?” and “how can we plug and play with the equipment and hardware that currently exists?” 

Manufacturers need to find solutions that don’t require consumers – be that shippers, carriers, or otherwise – to reinvest from the bottom up every time technology changes. 

For example, many telematics software and much of today’s connected vehicle technology have shifted away from the equipment itself and into the cloud so that updates can be made via air-wave technology—eliminating the need to reinvest in the next model year-over-year.

This issue is particularly challenging for electric cars and trucks. Companies like Tesla, BYD, and Daimler all have models with unique capabilities, but each offers different charging requirements and, therefore, requires different energy infrastructure. If these were standardized, the issue of infrastructure would be minimized. 

Alternative Technology is Often Misunderstood

While the financials, economics, and policies are easy to point to as challenges because of their quantitative nature, simple awareness of how each technology works, plans of action to implement, training for truck drivers, and their effect on the industry need to be a priority. If investors and key players in the alternative energy landscape do not have appropriate information and education, they are far less likely—if at all—to enter the game.

As Elizabeth Fretheim, head of business development for Nikola Motors stated in a previous interview about electric vehicles, “the technology will be viable from a business standpoint,” rather than simply a sustainability measure. But shifting that narrative in the minds of shippers and carriers is challenging. 

Further, educating the public to foster acceptance and reduce unfounded fears will help facilitate engagement with new programs. Because these are technologies that the public will directly interact with on the road, their support has huge staying power when it comes to taking on risk and investing in new technology. 

Without the demand for transparency into sustainable supply chains from the consumers of goods, it is difficult to motivate organizations to overcome the challenges laid out here. 

How to Overcome Challenges for Alternative Energy Technology

While these challenges are very real and affect the transportation industry at large, it is not impossible to overcome them. Many organizations are committed to confronting each one head-on. Investment is growing, and individual companies have pledged their commitment by ordering new equipment, announcing go-forward plans, and scaling back the current use of fossil-fuel-based fuel types.

Collaboration is budding as all members of the transportation community have the same goal: to remain economically and functionally viable regardless of what the energy landscape looks like in ten years. For this reason, it is safe to say that the industry is both aware of these challenges, and will rally to overcome them in the future.


Unveiling The Tesla Semi

3 min read

July 8, 2024

Learn the State-specific Diesel Fuel Tax Changes in Effect July 2024

Understand the state-specific changes in diesel tax rates and explore strategic solutions for shippers to accurately calculate fuel reimbursements to carriers.

Read more
What Is The IMO 2020 Sulfur Regulation?

4 min read

June 28, 2024

What Is Transportation Analytics? How to Leverage Freight Data

Discover the power of AI and machine learning for strategic decision-making in your freight network. Elevate your transportation analytics with these insights.

Read more
The Viability Of CNG In Supply Chain

7 min read

June 26, 2024

The Road to Zero Emissions: Heavy-Duty Electric and Hydrogen Vehicles

Compare electric heavy-duty vehicles and fuel cell electric vehicles. Discover their benefits, challenges, applications, and advantages.

Read more